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1. Introduction

Classical N = 8 supergravity (SG) has, in addition to 8 local supersymmetries, a lo-

cal SU(8) symmetry and a hidden global E7(7) symmetry [1, 2] on shell, when the exact

non-linear equations of motion are satisfied. The E7(7) symmetry is realized linearly and

independently from the local SU(8) symmetry and it acts on 133 scalars present in the

classical action before gauge-fixing, as well as on the vectors of the theory. The gauge-

fixing can use the 63 local parameters of SU(8) to remove 63 non-physical scalars so that

only 70 physical scalars are left. This leads to a non-linear realization of the E7(7) on

the remaining 70 massless scalar fields. The E7(7) transformation has to be performed

simultaneously with the gauge preserving field dependent SU(8) transformation which was

specified in [3]. In the light-cone gauge the first terms in the coupling constant expansion

of E7(7) symmetry were recently presented in [4].

The purpose of this note is to study consequences of the non-linearly realized E7(7)

symmetry for the one-soft-scalar emission. In our study of the low-energy theorems [5, 6] in

application to N = 8 SG we will use the approach developed in [7, 8] where the conserved

current of the non-linearly realized G/H symmetry plays the major role. The corresponding

Noether current was presented in [3] following the procedure developed for the general case

of duality symmetries in [9].
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Recently Bianchi, Elvang and Freedman [10] were looking for the footprint of E7(7)

in tree diagrams of N = 8 SG.1 The expectation was to reveal the low energy theorems

associated with the non-linear realization of symmetries like in pion physics [5, 6]. They

have computed in [10] the one-soft-boson limit of tree diagrams using the Feynman rules

and found that it always vanishes. Since there are cubic interactions in the theory, the

vanishing soft-boson limit of all tree amplitudes was not an obvious feature of the theory

but came out as the result of careful computations. A different setting for the study of the

low-energy theorem was suggested in [11] by Arkani-Hamed, Cachazo and Kaplan. They

used a specific supersymmetric deformation of the N=8 SG to complex momenta which

provides a set of recursion relations reducing all amplitudes to three point amplitudes. This

takes place due to a remarkable behavior of N=8 SG at large complex momenta. They

studied the 3-point amplitudes which do not vanish on shell for the complex momenta. They

established that in the one-soft boson limit these 3-point amplitudes vanish. This means,

via the recursion relations, that the one-soft boson limit for all on shell tree amplitudes

vanishes. They also studied a double soft limit of the amplitudes when two scalars are soft

and found that it is related to an SU(8) rotation of the amplitude without soft scalars.

In both of these cases, [10] and [11], the low-energy theorem was derived to support the

existence of a non-linear symmetry which shows up in the properties of the soft limit of the

scalar particles. This low energy theorem is viewed as an evidence for an E7(7) symmetry.

In our approach here we will start with the E7(7) symmetry and consider the conse-

quences of the Noether current conservation. The current Jµ consists of the linear part,

proportional to the derivative of a scalar J lin
µ , and a non-linear part Jnonlin

µ , which starts

as a quadratic function of various fields. The total current conservation relates the linear

part to the non-linear part

∂µJµ = ∂µJ lin
µ + ∂µJ nonlin

µ = 0 . (1.1)

One can therefore derive the relation between the amplitudes

〈β|∂µJ lin
µ |α〉 = −〈β|∂µJ nonlin

µ |α〉 . (1.2)

The left hand side of eq. (1.2) is related to the amplitude with the scalar emission M(α→
β+π(k)) since ∂µJ lin

µ ∼ �xπ(x). When the scalar momentum k is soft, the right hand side

of the equation is proportional to amplitude without a scalar, where only the diagrams with

singularities in the soft limit should be taken into account. The actual computation in gen-

eral [7] is reduced to the computation of the divergence of the non-linear part of the Noether

current between various one-particle states 〈i| and |j〉 divided by such singular propagator:

gA(0)ij ≡ lim
k→0

〈i(p)|∂µJ nonlin
µ (k)|j(p + k)〉
p · k . (1.3)

This expression was introduced in [8] and we will refer to it as ‘axial’ charge, since it co-

incides with the usual axial charge gA (∼ 1.257) for the nucleon case in the pion physics.

1The main results of the paper [10] is in a construction of the generating functions for the N=8 SG

amplitudes and their relation to N=4 Yang Mills amplitudes.
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Clearly, there is one level of softness k in the numerator due to the factor ∂, but there is

a singularity from the propagator in the diagram, which may cancel this k, and the soft

limit of the M(α → β + π(k)) may be non-trivial. However, if 〈i|∂µJ nonlin
µ |j〉 is as soft as

two powers in k, the amplitude M(α→ β + π(k)) will vanish in the soft limit.

The discussion above is general and not restricted to any particular level of pertur-

bation theory. This is provided that the linear part J lin
µ is understood to be the part of

the current operator which gives the linear term not in the scalar field but in the scalar

asymptotic field, that is, the whole part yielding the single massless scalar pole terms

(the category A diagram in figure 1 below). The full expression of the Noether current is

known [3]. Its matrix element between the external one-particle states has to be computed

in the soft-scalar limit to establish the low-energy theorem. In this paper, however, we will

limit ourselves with the computation of the ‘axial’ charge only at the tree level.

First we will provide in section 2 a calculational tool to derive the low-energy theorem

for theories with non-linear realization of a symmetry with scalars in G/H coset space.

The low-energy theorem in eq. (2.13) relates an arbitrary amplitude with an extra soft

scalar to the amplitude without such a scalar [7]. The relation between these amplitudes

is defined by the ‘axial’ charge [8], which may or may not vanish, in general. In section 3

we explain the subtleties with the Noether current in N=8 SG, which are due to explicit

appearance of the dual vector fields in the current. These dual fields are not present in the

Lagrangian. This would prevent us from using the low-energy theorem in the form required

for the analysis in section 2 based on [7, 8]. We show that if we focus on a particular part

of the E7(7) current, we may avoid this problem. In section 4 we actually compute various

components of the ‘axial’ charge and show that they all vanish. For this purpose we use

only the quadratic in fields parts of the current. The proof is generalized to whole E7(7)

currents assuming the SU(8) symmetry of the S-matrix. In section 5 we discuss the steps

towards the investigations of the low-energy amplitudes in higher loop order.

2. Low energy theorem for single pion emission processes

Let us review the derivation of the low energy theorem for single pion emission processes,

following refs. [6 – 8]. We often call the Nambu-Goldstone (NG) bosons ‘pion’ for short. In

our N = 8 SG context there are 70 scalar particles.

The general setting is that there is a symmetry group G with a continuous parameters

ǫa where a = 1, . . . , dimG. In such a case there is a conserved Noether current

∂µJaµ = 0. (2.1)

Suppose that G is spontaneously broken down to the unbroken subgroup H. Then there

are massless Nambu-Goldstone (NG) bosons φa in the coset space G/H whose number is

equal to the dimG − dimH, i.e., a = 1, . . . , dimG − dimH. The “broken” part of the

conserved Noether current has a linear term as well as higher order terms nonlinear in fields

Jaµ = −f0
π∂µπ

a + · · · . (2.2)
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Figure 1: Three categories of diagrams contributing to 〈β(Pf ) out|Ja
µ(x)|α(Pi) in〉. The small circle

with cross stands for the current operator.

One can sandwich the current between the vacuum and the one NG boson state

〈0|Jaµ(x)|πb(k)〉 = ikµfπδ
abe−ikx , (2.3)

where fπ is the decay constant and is equal to f0
π in (2.2) at tree level. From the current

conservation it follows that the NG boson is massless

〈0|∂µJaµ(x)|πb(k)〉 = k2fπδ
abe−ikx ⇒ k2 = mπ2

a
= 0 . (2.4)

For the single soft pion processes we proceed as follows. Consider the matrix element for

emission of a single soft NG boson πa(k) in an arbitrary multiparticle reaction α → β

〈β(Pf ) out|Jaµ(x)|α(Pi) in〉 ≡Ma
µ(k)αβe

−ikx , Pi − Pf = k . (2.5)

As shown in figure 1, the diagrams contributing to this matrix element can be divided into

three categories according to the places where the current Jµ acts: The first one (category

A) includes those in which the current act at the endpoint of the emitted pion line (which,

therefore, come from the field-linear term in Jµ at tree level.) The second one (category

B) includes those in which the current is attached to an external line of the initial and

final particles (which come from the field-bilinear terms in Jµ at tree level.) Finally, the

third (category C) stand for the rest which develop no one-particle pole singularity when

kµ → 0. Following [7] we represent these three contributions as follows

Ma
µ(k)αβ = Pa

µ(k)αβ + Qa
µ(k)αβ + Ra

µ(k)αβ . (2.6)

The first term has a pion pole term of the form

Pa
µ(k)αβe

−ikx = ifπkµe
−ikx i

k2
Gπαβ(k) , (2.7)

where Gπαβ(k) is the vertex function α → β + πa(k). For the on-shell pion at k2 = 0,

Gπαβ(k) reduces to the physical pion emission amplitude M(α→ β+πa(k)) which we want

to compute:

Gπαβ(k)
∣

∣

∣

k2=0
= i(2π)4δ4(Pβ + k − Pα)M(α→ β + πa(k)). (2.8)
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Therefore, if we use the current conservation law kµMa
µ(k)αβ = 0, we can evaluate the pion

emission amplitude indirectly from the other current matrix elements as

i(2π)4δ4(Pβ + k − Pα)fπM(α→ β + πa(k)) = kµ
(

Qa
µ(k)αβ + Ra

µ(k)αβ

)

. (2.9)

If we are interested in the soft limit k → 0 of the amplitude, this implies that the only

diagrams which have singularities at k = 0 can contribute to such soft pion amplitudes.

Such singularities can generally appear if the current operator acts on the external

one-particle lines as shown in the diagrams of category B in figure 1, whose amplitude is

denoted by the second term Qa
µ(k)αβe

−ikx. The rest diagrams in category C are regular at

k = 0 and cannot contribute. Qa
µ(k)αβe

−ikx has two contributions, one when the current

is attached to the external line of the outgoing particle

(Qa
µ(k)αβe

−ikx)out =
∑

i∈βout,mj=mi

〈i|Jaµ(x)|j〉ext i

(pi + k)2 −m2
j

〈β − i+ j|S|α〉 (2.10)

and the other, when the current is attached to the external line of the initial particle

(Qa
µ(k)αβe

−ikx)in =
∑

i∈αin,mj=mi

〈β|S|α − i+ j〉 i

(pi − k)2 −m2
j

〈j|Jaµ(x)|i〉ext. (2.11)

Here 〈i|Jaµ(x)|j〉ext denotes the external line term Qa
µ(k)ije

−ikx for the single-particle case

α = i and β = j, and α − i + j means that the particle i in α is replaced by the particle

j with the same momentum pi = pj on the mass-shell. It should be kept in mind that

the ‘internal’ states |j〉 and 〈j| here stand for slightly off-shell states before taking the soft

limit k → 0, and the expression

∑

j

|j〉 i

(pi ± k)2 −m2
j

〈j| (2.12)

should be understood to be the propagator of the particle j (so that the sum
∑ |j〉〈j| over

the polarization states gives the numerator of the propagator like, e.g., /pj + mj for the

Dirac particle case.)

For the case where the particle j is a massless gauge field, the numerator
∑ |j〉〈j|

contain not only the physical transverse states but also other unphysical polarization states.

We will discuss this point more concretely in section4.

These external line terms (2.10) and (2.11) contain propagators which have singularities

1/[(pi ± k)2 −m2
i ] = 1/(±2pi · k + k2) for on-shell momentum p2

i = m2
i .

Now we can apply the current conservation kµMa
µ(k) = 0 and take the limit k → 0.

From eqs. (2.9) and (2.10), (2.11), we find

fπM(α→ β + πa(k))

∣

∣

∣

∣

k→0

= i

[

∑

i∈β, j

gaA(0)jiM(α → β − i+ j)

−
∑

i∈α, j

gaA(0)ijM(α− i+ j → β)

]

, (2.13)
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where gaA(0)ij is an ‘axial’ charge of the external line defined in [8]

gaA(0)ij = lim
k→0

kµQa
µ(k)ij

2pi · k ± k2
. (2.14)

This is the low-energy theorem for the single soft pion emission processes.

We emphasize here that we have only to evaluate the category B diagrams in which

the current is attached to the external lines thanks to the current conservation. But we

should note that this by no means implies that only the diagrams in which the pion couples

to the external lines can contribute to the soft pion emission amplitude. Indeed there are

generally diagrams in category A in which the pion (denoted by dotted line) is attached to

the internal lines/vertices but which give non-vanishing amplitude in the soft limit.

The diagrams in category B possess the one-particle singularity so that the ‘charge’

gaA(0)ij is generically non-vanishing. However, in our N = 8 SG theory, no external lines

can give non-vanishing gaA(0)ij charge so that all the single soft pion emission amplitudes

vanish, as we will show below.

3. E7(7) current of N = 8 SG

The classical non-gauge-fixed action of N = 8 SG has a gauge SU(8) symmetry with

antihermitian and traceless local parameters

λi
j(x) = −λji(x), λii(x) = 0, i = 1, . . . , 8. (3.1)

and a global E7(7) symmetry with 133 parameters

ǫa = {ΛIJ ,ΣMNPQ} I, J,M, . . . = 1, . . . , 8. (3.2)

In the E7(7) symmetry we have generators of the SU(8) maximal subgroup of E7(7) with

parameters ΛI
J and the orthogonal ones, in E7(7)/SU(8) with parameters ΣMNPQ. There

are 63 ΛI
J and they are antihermitian and traceless

ΛI
J = −ΛJ I ΛI I = 0 . (3.3)

They can be decomposed into 28 antisymmetric generators of the SO(8) subgroup and 35

traceless symmetric generators orthogonal to SO(8). If we write ΛI
J as the sum of the real

and imaginary parts Λ = ReΛ + i ImΛ, then we have

ReΛT = −ReΛ , ImΛT = ImΛ , (3.4)

where the real part is identified with the antisymmetric and the imaginary part with the

symmetric part of Λ. The off-diagonal part has to satisfy the self-duality constraint with

the phase η = ±1

ΣIJKL =
1

24
η ǫIJKLMNPQΣMNPQ . (3.5)

We can also decompose Σ into real and imaginary parts Σ = ReΣ + i ImΣ. However, in

this case, both real and imaginary parts of Σ have the same transposition properties

ReΣT = ReΣ , ImΣT = ImΣ (3.6)

– 6 –
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with (ΣT)IJKL ≡ ΣKLIJ . Then the self-duality constraint implies that the real part is

η-self-dual and imaginary part is η-anti-selfdual. The real and imaginary parts of Σ each

consists of 35 real parameters. Thus we present the 133 real parameters of E7(7) as 133 =

28 + 35 + 35 + 35.

When the local SU(8) symmetry is fixed in the unitary gauge as described in de-

tail in [3], there are only 70 scalars (out of 133) left in G/H = E7(7)/SU(8). The Noether

current corresponding to E7(7) symmetry was presented in [3] based on the general Gaillard-

Zumino procedure [9].

∂µJµ = 0 Jµ ≡
133
∑

a=1

Jaµǫa . (3.7)

Here the 133 components of the current Jaµ are contracted with the symmetry parameters ǫa.

The E7(7)-current is special since it corresponds to the symmetry of the equation of

motion but not of the Lagrangian. This peculiarity appears in the point that the current

Jµ can be given only if we use the dual vector field Bµ which itself does not appear in the

lagrangian and is a complicated non-local field if expressed in terms of the original fields,

Aµ and others.

That is, the current is given in the form as given by Gaillard and Zumino [9]:

Jµ = jµϕ + jµGZ

jµϕ =
∑

ϕi

∂L
∂(∂µϕi)

δEϕi

jµGZ =
1

4
(G̃µνAAν − F̃µνCAν + G̃µνBBν − F̃µνDBν) , (3.8)

where ϕi stand for all the fields other than the vector field Aµ, and δEϕi for the E7(7)

transformation of ϕi. Here the U(1) vector field strength F and its dual F̃ are F = dA
and F̃µν ≡ 1

2ǫµνρσF
ρσ, and G̃µν is defined to be

G̃µν ≡ 4
∂L
∂Fµν

, (3.9)

and the parameter matrices A, . . . , D are given by

A = −DT = ReΛ − ReΣ B = ImΛ + ImΣ C = −ImΛ + ImΣ . (3.10)

If the equation of motion ∂µG̃
µν = 0 is used, its dual Gµν can be expressed as the field

strength of the dual vector field G = dB. Since G̃µν is defined by (3.9), G = dB is just an

equation of motion.

We have suppressed here the internal indices on each vector field. In particular, in

eq. (3.8) the first two indices of Σijkl are contracted with the left vector field strength ( G̃

or F̃ ) and the second two with the corresponding two indices of the vector field (A or B)

on the right.

– 7 –
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The 4-divergence of eq. (3.8) gives

∂jϕ = −∂jGZ

= −1

8
(G̃µνAFµν − F̃µνCFµν + G̃µνBGµν − F̃µνDGµν)

= −1

8
(2G̃µνAFµν − F̃µνCFµν + G̃µνBGµν) . (3.11)

where we used DT = −A in going to the last equality.

The problem here is the last term G̃µνBGµν , which cannot be written in a 4-divergence

form unless we introduce the dual vector field Bµ, even if we use the equation of motion.

Moreover, the Feynman rules in the presence of the dual vector field Bµ are not avail-

able. This complicates the derivation of the low-energy theorem when this part of the

current is used.

Therefore, from here on, we restrict to the current (and soft scalars) corresponding

only to ReΣ of E7(7)/SU(8). We see from eqs. (3.10) that only A is non-vanishing and

B = C = 0 when Λ = ImΣ = 0. Thus we have

Jµ = jµϕ − 1

2
G̃µνReΣAν . (3.12)

The explicit form for the E7(7) current jµϕ was given in [3] and we will show the explicit

forms for the quadratic in fields part below where we will need them.

4. Proof of the vanishing of the ‘axial’ charge ga

A
(0)

We now examine the scattering amplitudes for the single pion emission processes (corre-

sponding to ReΣ).

Since the current Jµ is written solely in terms of the usual local fields for the ReΣ

cases (no dual vectors), it is clear that only the singular diagrams for the current matrix

element 〈α|Jµ(x)|β〉 could contribute to the soft-limit of the 4-divergence matrix element

lim
k→0

∫

d4x eikx 〈α|∂µJµ(x)|β〉. (4.1)

Those are the category A and B diagrams. As explained in section2, the pion emission

amplitude given by the category A diagrams can be evaluated by the category B diagrams

in which the current operator is inserted in the external lines.

We thus have only to evaluate the category B diagrams. For definiteness we consider

the case where the soft pion is emitted with momentum k from the external lines appearing

in the final states, since the discussion for the initial state case is quite similar. Then we

want to evaluate the external line part as shown in figure 2. We call the external on-shell

state field φA(p), and, looking back in time, it is converted by the current operator into

a slightly off-shell particle φB(q) which propagates and connects to the source current jB
in the main body of the diagram through the interaction Lagrangian φBjB . The external

momentum p and the pion momentum k are put on the mass-shell p2 = k2 = 0 and we

– 8 –
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Figure 2: The insertion of the non-linear part of the divergence of the Noether current into an

external line of the on-shell amplitude.

work in the frame in which only p+ and k− components are non-vanishing. Then the

denominator of the slightly off-shell propagator becomes q2 = (p + k)2 = 2p · k = 2p+k−.

Let us consider all case separately where those φA(p) and φB(q) stand for various

possibilities of fields.

4.1 Vector case; φA, φB = Aµ

The current of the vector field was given above and only the quadratic part is relevant at

the tree level:

Jµvec = −1

2
G̃µνReΣAν

⇒ −1

2
FµνReΣAν . (4.2)

Then, we separately evaluate the contributions from the two terms ∂µAν and ∂νAµ in

Fµν = ∂µAν − ∂νAµ, since they are to be shown vanishing separately. The external vector

line diagram with the current ∂µAνReΣAν inserted which is attached to the rest of the

diagram through the vertex Aρj
ρ
V is evaluated as:

−ikµ
(

ǫ∗ν(p) ipµReΣ
−iδνρ
q2

+ ǫ∗ν(p)ReΣ (−iqµ)
−iηνρ
q2

)

〈

jρV (q) · · ·
〉

= ǫ∗ν(p) k · (p− q)ReΣ
−iδνρ
q2

〈

jρV (q) · · ·
〉

= 0 , (4.3)

since q = p+ k and k2 = 0.

For the part ∂νAµReΣAν, we have

−ikµ
(

ǫ∗µ(p) ipν ReΣ
−iδνρ
q2

+ ǫ∗ν(p)ReΣ (−iqν)
−iηµρ
q2

)

〈

jρV (q) · · ·
〉

=

(

k · ǫ∗(p)ReΣ
−ipρ
q2

− q · ǫ∗(p)ReΣ
−ikρ
q2

)

〈

jρV (q) · · ·
〉

= 0 , (4.4)

since the polarization vector is transverse so that k · ǫ∗(p) = k−ǫ∗+(p) = 0 and p · ǫ∗(p) = 0

hence q · ǫ∗(p) = 0.
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4.2 Fermion cases

Next we consider the cases where φA(p) and φB(q) are the gravitinos ψµi and graviphotinos

χijk, or vice versa. The relevant current operator at the tree level is the bilinear part:

Jµferm ∼ χijkγ
νγµψνlΣ̄

ijkl + h.c. . (4.5)

4.2.1 φA = ψµi and φB = χijk

The external gravitino should be on-shell physical so that the polarization vector-spinor

ψµ(±)(p) is of helicity ±3/2:

ψµ(±)(p) ≡ ǫµ(±)(p)u(±)(p) , (4.6)

where ǫµ(±)(p) is the transverse polarization vector with helicity ±1 and u(±)(p) is the

Dirac spinor with helicity ±1/2. Note that this helicity ±3/2 states satisfy the condition

γνψ
ν
(±)(p) = 0, so that ψ̄ν(±)(p)γ

µγν = 2ψ̄µ(±)(p). We use this relation in the fermion

current (4.5) and take the coordinate system in which only p+ and k− are non-vanishing.

Then, we find, for the external line part,

−ikµ2ψ̄µ(±)(p)
i/q

q2
= −ik−2ψ̄+

(±)(p)
i/q

2p+k−
= ǫ∗+(±)(p) ū(±)(p)

/q

p+
= 0 , (4.7)

since the transverse polarization vector ǫµ
(±)

(p) has vanishing µ = + components.

4.2.2 φA = χijk and φB = ψµi

Next consider the case where gravitino is on the slightly off-shell propagator side. The

gravitino propagator in the gauge with gauge-fixing term

i

2α
(ψ̄ · γ)/∂(γ · ψ) (4.8)

is given by Das and Freedman [12] in the form:

〈

ψν(q)ψρ(−q)
〉

= i

(

ηνρ + (2 + α)
qνqρ
q2

)

/q +
1

2
γν/qγρ − (qνγρ + γνqρ)

q2

= i

−1

2
γρ/qγν + (2 + α)

qνqρ
q2

/q

q2
. (4.9)

Writing the spinor state of graviphotino as χ(p), we find

lim
k→0

−ikµ χ(p)γνγµi

−1

2
γρ/qγν + (2 + α)

qνqρ
q2

/q

q2
〈

jρψ(q) · · ·
〉

, (4.10)

where jρψ is the source current of gravitino such that ψ̄ρj
ρ
ψ appears in the interaction

part of the Lagrangian. If we use the conservation law of the gravitino source current,

qρj
ρ
ψ(q) = 0, we immediately see that the double pole term vanishes. This conservation

law generally holds for the sum of a set of diagrams. We can show that this double pole
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term actually vanishes graph by graph as follows. Using the on-shell equation for the

graviphotino χ(p)/p = 0, χ(p)/k = χ(p)/q and k2 = 0, the double pole term is rewritten as

kµ χ(p)γνγµ
qνqρ/q

(q2)2
= χ(p)/q /k

qρ/q

(q2)2
= χ(p)k2 qρ/q

(q2)2
= 0. (4.11)

We can show that the rest part also vanishes as follows: Taking the same coordinate system

as above with only p+ and k− non-vanishing, and using the identity γν/a/b/cγν = −2/c/b/a,

lim
k→0

k− χ(p)γνγ+−1
2γρ/qγν

2p+k−
=

−1
2χ(p)γνγ+γρ/pγν

2p+
= χ(p)/pγργ

+ 1

2p+
= 0. (4.12)

4.3 Scalar and graviton

There are no scalar-scalar bilinear part in the current since the scalar part of the current

consists only of odd power terms in scalar field (which is as usual in the non-linear La-

grangians for the symmetric coset space G/H). However there is a scalar-graviton bilinear

term in the current:

Jµscalar–graviton =
√−ggµν ReΣ ∂νy + h.c.

⇒ hµν ReΣ ∂νy + h.c. , (4.13)

where we have defined our graviton hµν by

√−ggµν = ηµν + κhµν . (4.14)

4.3.1 φA = hµν and φB = y

For this case, the polarization tensor for the graviton external state is given by the product

of two polarization vectors for vector particle, as ǫµ(p)ǫν(p), and the external line part is

evaluated as

−ikµ ǫ∗µ(p)ǫ∗ν(p)ReΣ (−iqν)
1

q2
= −k · ǫ∗(p) q · ǫ∗(p)ReΣ

1

q2
. (4.15)

This vanishes since the polarization vector is transverse and p · ǫ∗(p) = 0, k · ǫ∗(p) = 0 and

q · ǫ∗(p) = 0 hold as for the above vector case.

4.3.2 φA = y and φB = hµν

In this case the external line diagram attached to the rest of the diagram through the

interaction term hρσTρσ, is given in the form

−ikµ · ipν · iDµν,ρσ(q)
〈

T ρσ(q) · · ·
〉

. (4.16)

Here we use the de Donder-Landau gauge for the graviton ∂µhµν = 0 in which the graviton

propagator is given by2

Dµν,ρσ(q) =
ηµρηνσ + ηµσηνρ

q2
− ηµρqνqσ + ηµσqνqρ + ηνρqµqσ + ηνσqµqρ

q4
+ 2

qµqνqρqσ
q6

.

(4.17)

2See e.g. [13] where the propagator for the graviton field h̃µν (gµν = ηµν +κh̃µν) is given in generic class

of gauges.
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In eq. (4.16) the contribution from the second and third terms in the propagator imme-

diately vanishes due to the explicit factor of qρ or qσ and because of the conservation of

the energy-momentum tensor qρT
ρσ(q) = qσT

ρσ(q) = 0. The first term vanishes in the soft

pion limit

lim
kµ→0

2k−pµ
〈

T+µ(q) · · ·
〉

2p+k−
=
pµ

〈

T+µ(p) · · ·
〉

p+
= 0 , (4.18)

because of the conservation of the energy-momentum tensor, pµ〈T+µ(p) · · · 〉 = 0.

We have thus completed the proof that the single soft pion emission amplitudes vanish

in N = 8 SG, at least for the soft scalar particles Re y corresponding to the ReΣ. We cannot

extend this proof directly to the scalars corresponding to ImΣ if we use the Feynman rules

from the action which has only one of the vector fields, not the dual one. This is because

the corresponding current cannot be given without using the dual vector fields. However,

as Gaillard and Zumino argued, the Hamiltonian, and hence S-matrix also, is invariant

under SU(8) transformation. Since the scalar fields give an irreducible representation 70

under SU(8), we can conclude from SU(8) symmetry of the S-matrix that single soft pion

emission amplitudes also vanish for the Im y scalar cases, once we prove that is the case

for the Re y scalars. We should, however, keep in mind that the SU(8) symmetry is by no

means trivial since it is not a manifest symmetry in the Feynman graph computations but

appears to be a symmetry of the on-shell amplitudes.

5. E7(7)(R) symmetry in higher-loop orders?

Before discussing the possibility of the higher-loop E7(7)(R) symmetry with 133 generators

X and T , let us remind that there are 70 generators of E7(7)/SU(8) symmetry, let us call

them X, and there are 63 T -generators which form the maximal SU(8) subalgebra. The

total algebra consists of [T, T ] ∼ T and [X,T ] ∼ X and [X,X] ∼ T . At the tree level

for the amplitudes with any number of external states the following information has been

obtained at present. On one hand, the studies in [10] and in [11] were performed directly

on the amplitudes with an emission of a soft scalar and it has been established that all

such tree amplitudes vanish in the soft limit. On the other hand, in this paper we have

assumed that E7(7)(R) is preserved and studied the consequences of such assumption. One

may argue that at the tree level the symmetry of the on-shell action cannot be anomalous

and therefore it is not even an assumption that that E7(7)(R) is preserved in the form

∂µJXµ = (∂µJ lin
µ )X + (∂µJnonlin

µ )X = 0 (5.1)

for any matrix elements between physical states at the tree level. We have computed the

amplitudes with an emission of a soft scalar associated with the term (∂µJ lin
µ )X indirectly

by computing the matrix elements of the second term (∂µJnonlin
µ )X . This second term

could have provided us with the relation between the soft amplitude with a scalar and the

amplitudes without a scalar as shown in eq. (2.13): the relation between these two is given

by the ‘axial’ charge [7, 8], which in our case is g(0)Xij . We have found that at the tree

level in N=8 SG all components of this charge are vanishing. Since at the tree level the
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conservation of the total Noether charge is taken for granted, ∂µJµ = 0, we have clearly

an alternative derivation of the vanishing of soft amplitude with the emission of a boson.

This follows from the E7(7)(R) symmetry. The subgroup H = SU(8) of this symmetry just

requires the current conservation and is not associated with any massless scalars

∂µJTµ = (∂µJnonlin
µ )T = 0 . (5.2)

At higher loop level we have to assume that the total Noether charge is conserved, ∂µJµ
both in the SU(8) sector T as well as in the coset part of it, X. From such an assumption

in the X part of the current we can only derive the low-energy theorem in the form of

eq. (2.13). By itself it does not require that the soft limit of the amplitudes with a scalar

should vanish: the symmetry only requires that the soft limit is defined via eq. (2.13)

to be related to the amplitudes without a soft scalar times the ‘axial’ charge. One may

entertain a scenario when at higher loops this charge is not vanishing, and the soft limit

of the amplitudes with a scalar is also not vanishing. In such case the right hand side of

equation (2.13) is equal to the left hand side, both non-vanishing, and we may still have

an unbroken E7(7)(R) symmetry.

However, if we look at the diagonal part of the E7(7)(R) algebra which is a SU(8)

subalgebra of it, the linear term is absent since the scalars live in the coset space of

E7(7)/SU(8) and the SU(8) current has a usual structure of the type ψ̄γµt
IJψ + · · · where

the tIJ matrices form the SU(8) algebra. The issue of the 1-loop anomalies is reduced to

the computation of the standard triangle anomaly diagrams. In N=8 SG this was done

in [19] where it was shown that SU(8) anomalies cancel. Anomalies for symmetries forming

the algebra satisfy the Wess-Zumino consistency condition. Therefore the total G =E7(7)

may be anomaly-free and not only its maximum subalgebra.

What does this mean for the E7(7)(R) and the low-energy theorems in higher order

amplitudes? It is safe to expect that the low-energy theorem (2.13), if confirmed, will

prove that the coset part of the symmetry, the E7(7)/SU(8) part, is not anomalous. It is

also likely (but not necessary, from all we know) that it would mean that the right hand

side of eq. (2.13) vanishes by itself and the left hand side by itself, i.e. the soft limit of the

amplitude with a soft scalar vanishes, as it takes place at the tree level.

In higher-loop level we have to find out if the low-energy theorem in the form (2.13)

is satisfied to preserve the E7(7)(R) symmetry. This requires both the knowledge of the

one-soft scalar limit amplitude as well as the computation of the ‘axial’ charge at higher

loops. If the charge vanishes, as at the tree level and if the one-soft scalar limit amplitude

vanishes, the E7(7)(R) is unbroken.

6. Discussion

The second string revolution was, in particular, focusing on the U-duality of string theory,

as explained in [14, 15]. It was noticed there that the E7(7)(R) symmetry of the classical

N = 8 SG is broken down by quantum effects to a discrete subgroup E7(7)(Z) symmetry,

which includes the T-duality group, O(6, 6,Z) and the S-duality group SL(2,Z). It is a well
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known fact that the Noether theorem and the conserved Noether currents are associated

only with continuous symmetries and not with the discrete ones.

The relation between string theory and N=8 SG in d=4 is not simple, moreover, it has

been explained in [16] that the perturbative N=8 SG in d=4 cannot be decoupled from

the string theory. The reason for this is the existence in the string theory of additional

massless and massive towers of states which are not present in N=8 SG in d=4. Therefore

one should study the N=8 SG as a QFT, directly in d=4. It has been even proposed that

it may be the simplest possible QFT [11].

In this paper we studied the consequences of the classical continuous E7(7)(R) symme-

try which leads to a conserved Noether current and explains why the one-soft-boson limit

of all tree amplitudes of N = 8 SG vanishes. Our method is complementary to the prior

derivations of the low-energy theorem in N=8 SG in d=4. In [10] it was found that all tree

amplitudes vanish in the one-soft-boson limit. This was established using the N=8 SG

Feynman rules and the hope was expressed that it might be related to the E7(7) symmetry.

We have now confirmed this and clarified in the following sense: We have shown that the

low-energy theorem in N=8 SG is a consequence of the continuous E7(7)(R) symmetry,

which remains unbroken as far as the tree diagrams of N=8 SG are concerned. The proof

of the low-energy theorem in [11] supports the presence of the moduli space in N=8 SG.

In this paper we derived the low-energy theorems associated with the Nambu-Golsdtone

bosons, coordinates of the G/H = E7(7)(R)/SU(8) coset space and the corresponding non-

linearly realized symmetry. The vanishing of the one-soft-boson limit is demonstrated in

this paper in the tree approximation by use of the Noether current of the E7(7) symmetry.

We have seen that the ‘axial’ charges are all vanishing in N = 8 SG at the tree level

at least. This is in sharp contrast to the usual pion physics in which the axial charges are

non-vanishing. Therefore something special happens here. It must, of course, be related

to the fact that the scalars in this model are not mere the Nambu-Goldstone bosons of the

E7(7)(R) symmetry but also the members of the maximal N = 8 super-multiplet including

the unique graviton. This may be relevant to the issue of the conjectured all-loop finiteness

of N = 8 SG [17], and the discussion of this issue was given in [11].

This brings us to the following question: Is the E7(7)(R) symmetry the property of tree

diagrams only, or it will also take place for higher order perturbation corrections? We pre-

sented an analysis of this problem in section 6. Finally, is E7(7)(R) symmetry relevant to the

issue of the conjectured all-loop finiteness of N = 8 SG [17, 18]? This remains to be seen.

There is an argument in favor of the absence of anomalies of E7(7)(R) symmetry at the

one-loop level. It has been shown in [19] that the chiral SU(8) one-loop triangle anomaly

vanishes as a result of the cancelation of the fermions and chiral vectors contribution. Since

the SU(8) has no anomalies, the Wess-Zumino consistency condition for anomalies suggests

that the total G =E7(7) is not anomalous, at least at the one-loop level. It would be very

interesting to find out whether this expectation is correct and study the status of possible

E7(7) anomalies in higher loops.
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